Europa Initiative team meeting Optimisation of the Europan orbits for JEM

William Desprats

with the help of : RYAN P. RUSSELL, GEORGES BALMINO and JULIEN LAURENT-VARIN

- 1 Interplanetary cruise
 - Tranfers using swing-by's
 - Direct transfer to Jupiter
- Prom JOI to EOI
- 3 Delivery & Relay phase
 - Purpose of those orbits
 - Frozen orbits
 - Halo orbits
- **4** Science Orbit
 - Connecting halo orbits to science orbits
 - Results

1 Interplanetary cruise

- Tranfers using swing-by's
- Direct transfer to Jupiter

Prom JOI to EOI

- 3 Delivery & Relay phase
 - Purpose of those orbits
 - Frozen orbits
 - Halo orbits
- 4 Science Orbit
 - Connecting halo orbits to science orbits
 - Results

Tranfers using swing-by's

Launch Date	Flyby Path	TOF to JOI (yrs.)	C ₃ (km²/s²)
25 Mar 2020	VEE	6.03	15.6
27 May 2021	VEE	6.87	14.5
21 Nov 2021	VEE	6.37	15.0
15 May 2022	EVEE	7.22	10.2
23 May 2023	VEE	6.18	16.4
03 Sep 2024	VEE	6.71	13.8
01 Aug 2026	VEE	6.94	10.0
21 Jul 2026	VEE	6.15	15.2

Figure 1: Short list of interplanetary trajectories (from ES 2012 Report by NASA

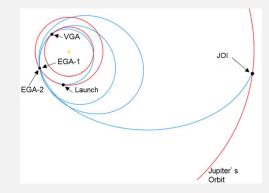


Figure 2: Example of VEEGA trajectory

1 Interplanetary cruise

- Tranfers using swing-by's
- Direct transfer to Jupiter
- Prom JOI to EOI
- 3 Delivery & Relay phase
 - Purpose of those orbits
 - Frozen orbits
 - Halo orbits
- 4 Science Orbit
 - Connecting halo orbits to science orbits
 - Results

Direct transfer to Jupiter

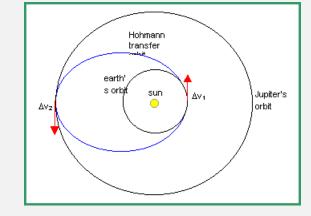


Figure 3: Hohmann transfer

 $\begin{array}{l} \mbox{Hohmann transfer}:\\ \Delta V_1 = 8.80 \mbox{km/s}\\ \Delta V_2 = 5.64 \mbox{km/s}\\ \mbox{TOF} = 2.73 \mbox{ years} \end{array}$

Interplanetary cruise	From JOI to EOI	Delivery & Relay phase	Science Orbit
Jovian tour			

Table B.2.6-4. Trade-offs between Flight-time, deterministic ΔV , and TID (Si behind 100 mil Al, spherical shell) for various types of tours as compared to the concept baseline tour

JOI-to-EOI, inclusive					
Flight Time (delta yrs)	ΔV (delta km/s)	TID (delta Mrad)	Type of Tour		
0	> 5.5	~0	No tour, direct insertion to Europa Orbit from interplanetary trajectory		
0.25	4	~0	Callisto gravity assists and v-infinity leveraging		
0.5	3	~0	Further Callisto gravity assists and v-infinity leveraging		
1	2.5	0.1-0.5	Callisto and Ganymede gravity assists (no endgame)		
1.5	1.5	0.8-1.2	Callisto, Ganymede, and Europa gravity assists (4:3, 6:5 endgame)		
2.5	1.3	1.7	Callisto, Ganymede, Europa and lo gravity assists		

Figure 4: Trade-offs between Flight-time, ΔV , and TID (from ES 2012 Report by NASA)

- Interplanetary cruise
 - Tranfers using swing-by's
 - Direct transfer to Jupiter

Prom JOI to EOI

3 Delivery & Relay phase

- Purpose of those orbits
- Frozen orbits
- Halo orbits
- 4 Science Orbit
 - Connecting halo orbits to science orbits
 - Results

Landing site

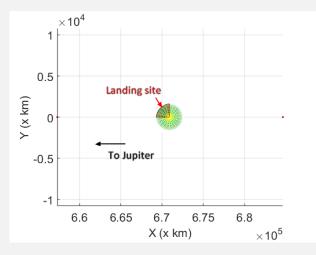


Figure 5: Restricted area for landing site in Jupiter-Europa rotating frame (Projection on Europa Orbital plane)

Delivery : The carrier spacecraft must be within line of sight of the lander stack from deployment to landing in order to provided communications coverage for critical events associated with landing.

Relay : ensure communication with lander around 60% of time

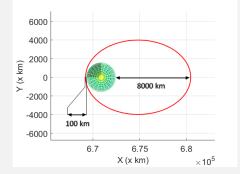


Figure 6: Classc keplerian orbit

Pb : Periastre is circulating around Europa (explain how)

- Interplanetary cruise
 - Tranfers using swing-by's
 - Direct transfer to Jupiter
- Prom JOI to EOI

3 Delivery & Relay phase

- Purpose of those orbits
- Frozen orbits
- Halo orbits
- Orbit
 - Connecting halo orbits to science orbits
 - Results

Frozen orbits

fixed periaspe low-inclined and stable : expensive to go on a near-polar orbit R.Russell is investigating them

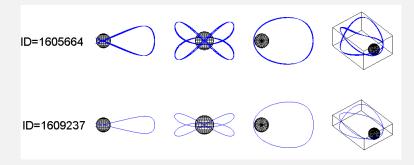


Figure 7: Stable orbits around Europa in the rotating frame (Ryan P. Russell)

- Interplanetary cruise
 - Tranfers using swing-by's
 - Direct transfer to Jupiter
- Prom JOI to EOI

3 Delivery & Relay phase

- Purpose of those orbits
- Frozen orbits
- Halo orbits
- Orbit
 - Connecting halo orbits to science orbits
 - Results

Halo orbits

- Unstable periodic orbits around L1 & L2
- Symmetric about XZ-plane
- Two families : Northern & Southern
- Easy to leave
- Little maneuvers (few m/s for delivery and relay phase) required to stay on orbit
- Maneuvers computed from Earth

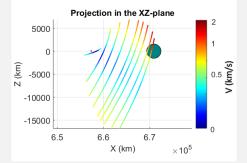


Figure 8: JEL1 Halo orbits

Example of halo orbit

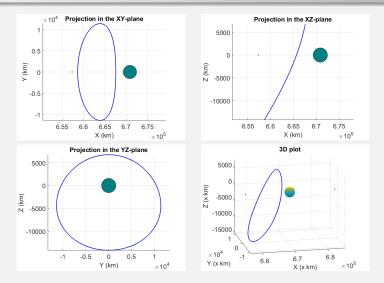


Figure 9: Projection and 3D-view of a JEL1 halo orbit (C = 3.0013) in the rotating frame

- Interplanetary cruise
 - Tranfers using swing-by's
 - Direct transfer to Jupiter
- Prom JOI to EOI
- 3 Delivery & Relay phase
 - Purpose of those orbits
 - Frozen orbits
 - Halo orbits

4 Science Orbit

- Connecting halo orbits to science orbits
- Results

Connecting halo orbits to science orbits

	Min.	Max.
altitude (km)	100	200
inclination (deg)	80	90
duration (days)	30	∞

Table 1: Science orbit characteristics

Description of the algorithm :

- Choose a halo orbit
- Choose a location on halo orbit
- Tangent burn or small burn in the unstable direction
- Search for extrema location
- · Second burn to circularize around Europa
- Compute circular orbit until crash on Europa

- Interplanetary cruise
 - Tranfers using swing-by's
 - Direct transfer to Jupiter
- Prom JOI to EOI
- 3 Delivery & Relay phase
 - Purpose of those orbits
 - Frozen orbits
 - Halo orbits

4 Science Orbit

- Connecting halo orbits to science orbits
- Results

Interplanetary cruise	From JOI to EOI	Delivery & Relay phase	Science Orbit
Example of transfers	$C_{halo} = 3.0013)$		

$\Delta V_1 \ (m/s)$	$\Delta V_2 (m/s)$	$\Delta V_{tot} (m/s)$	TOF (days)	altitude (km)	inclination (°)
8.0	487.5	495.5	1.31-30.0	190	83.8
216	449.6	665.6	0.51	109.7	86.1
48	480.7	528.7	0.93	146.5	80.9
40	481.4	521.4	1.34	186.9	88.3

Table 2: Transfers with a tangent burn

$\Delta V_1 \ (m/s)$	$\Delta V_2 \ (m/s)$	$\Delta V_{tot} (m/s)$	TOF (days)	altitude (km)	inclination (°)
0.8	490.1	490.9	2.27	194.1	80.5
0.5	502.9	503.3	2.91	127.5	82.1
2.8	489.4	492.1	1.83	198.3	80.6
5.6	492.4	497.9	1.64	181.7	80.3

Table 3: Transfers with small burn in the unstable direction

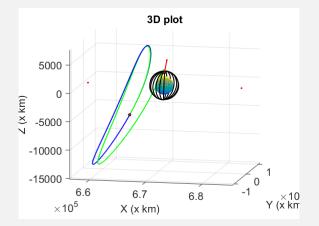


Figure 10: Transfer from a JEL2 Halo orbit (C = 3.0013) to a science orbit ($\Delta V_{tot} = 495.5$ m/s, TOF = 1.31d, alt=190km, inc = 83.8°)