PSI #3 : Characterize the exchange processes at the interface between the surface/subsurface and the exosphere-ionosphere

F. Leblanc

LATMOS/CNRS, UPMC, Paris, France

September 07-09-2016

From the magnetosphere to the exosphere

September 07-09-2016

Radiation-induced surface chemistry

Differential flux upstream of Europa (Cooper et al. 2005)

Europa initiative team meeting

September 07-09-2016

irradiation effects

Europa's atmosphere and Torus

Species observed in atmosphere : O_2 (~10¹⁵ cm⁻²), Na (10¹⁰ cm⁻²,), K (10⁹ cm⁻²) **Species observed in Torus :** H_2 (4.2 ×10³³), O (4.0×10³²) = 3× (lo torus O + S) = 200-1000 Europa atmosphere Additional Volatiles Observed in the Surface: O₂, SO₂, CO₂ (Will sputter with ice like Na) Non-volatiles: $H_{2}O, H_{2}O_{2}$ Sulfur, Sulfate, Carbon, Carbonate, CN, **Organics**, Minerals? **Atmospheric loss rates predicted from models:** ~5×10²⁶ O+O₂/s + ~2 ×10²⁶ O/s + ~1×10²⁶ H/s + ~1×10²⁶ H₂O/s + ~1×10²⁵ OH/s (Smyh & Marconi 2006) ~1.2×107 Na/cm²/s

(Leblanc et al. 2005)

Ion Density

Neutral Densities

September 07-09-2016

Roth et al. (2013)

"...significant coincident surpluses of hydrogen Lyman-α and oxygen OI 103.4 nm emissions above the Southern hemisphere in December 2012. "

"Nondetection in November and in previous HST images from 1999 suggests varying plume activity..."

Roth et al. (2015)

"Both brightness and aurora morphology undergo systematic variations correlated to the periodically changing plasma environment."

September 07-09-2016

Roth et al. (2015)

"The dusk side is consistently brighter than the dawnside with only few exceptions, which cannot be readily explained by obvious plasma physical or known atmospheric effects." "Europa's bound atmosphere is dominated by O₂." "...a more extended atomic O corona, but O₂ prevails at least up to altitudes of ~900 km. "

A 3D model of Europa's exosphere: EGM)

- Parallelized Monte Carlo approach for H₂O, H₂, O₂, H, O, OH
- Sublimation + Sputtering
- Surface reservoir
- Europa's rotation and Jupiter gravity
- Collisions can be included but are neglected for most of the runs

September 07-09-2016

Origin of the Dawn-dusk asymmetry in oxygen exosphere.

O₂ migrates slowly from day to night. Its spatial distribution is highly related to its ~half rotational period previous history.

O is essentially produced from O_2 . O density is larger than O_2 density above few hundreds km (collisions populate higher altitudes in O_2).

H₂ shows nominal day/night asymmetry. No dawn/dusk due to rapid migration and no absorption.

H₂O leading/trailing asymmetry due to change in albedo, sputtering, and lack of migration due to efficient absorption.

Europa initiative team meeting

 $\langle N \rangle = 1.1 \times 10^{1} \text{ R} \ 135.6 \text{ nm}$ Phase Angle 273.00°

Orbital evolution of O₂ emission

50 ·

50 ·

100

2001

150

Orbital evolution of O₂ emission

From the exosphere to the surface

September 07-09-2016

What measurements?

September 07-09-2016

Objective

What are the origins of Europa's exosphere? Approach

How is Europa's exosphere today?
Composition (major and trace species)
Spatial distribution (relations with magnetosphere, phase angle and surface)
Evolution (Jupiter and Europa periods time scale)

What are the main drivers of its formation?

- Role of the magnetosphere/Sun/dust
 - Role of the Surface/subsurface

September 07-09-2016

How is Europa's exosphere today?

- Composition (major and trace species) Density of the neutral exospheric species From few cc to 10⁸ cm⁻³ up to 100 amu Density of the ion exospheric species (eV range) From few 10⁻² to 10⁴ cm⁻³ up to 50 amu Spatial distribution (relations with magnetosphere, phase angle and surface) Spatial resolution of few tens of km horizontally and few km in altitude (depending on species). Full coverage at few phase angles Evolution (Jupiter and Europa periods time scale) From one hour to few 10s of hours for major species

What are the main drivers of its formation?

- Role of the magnetosphere/Sun/dust

Ion and electron densities (keV range) with spatial resolution and on hour time scale

Dust density and composition with spatial resolution and on few hour time scale

Coverage of Europa's exosphere during eclipse

Role of the Surface/subsurface

Latitudinal and longitudinal coverage at different phase angles for major and trace species

Spatial resolution of few tens of km horizontally and few km in altitude for trace species; of hundred km horizontally and ten km in altitude for major species