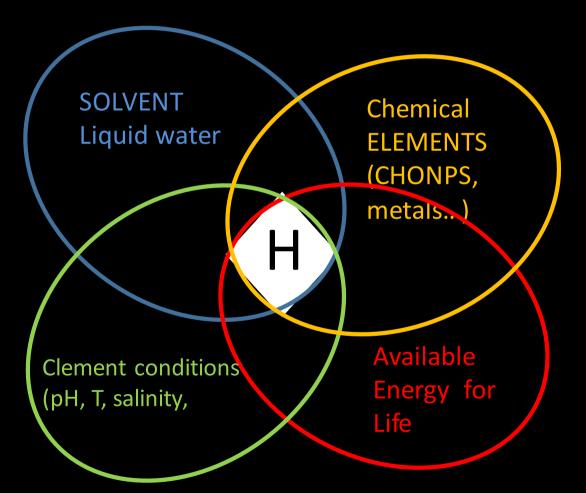
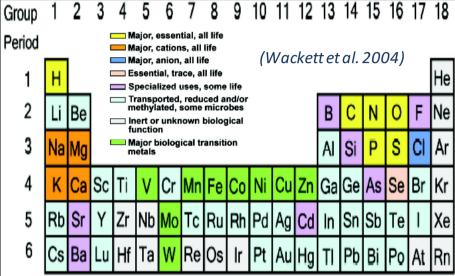

FROM FORMATION TO SEARCH FOR LIFE (part 2)

EUROPA IN THE JUPITER SYSTEM:


FROM FORMATION TO SEARCH FOR LIFE

Europa habitable zone. Ocean worlds Europa biosphere

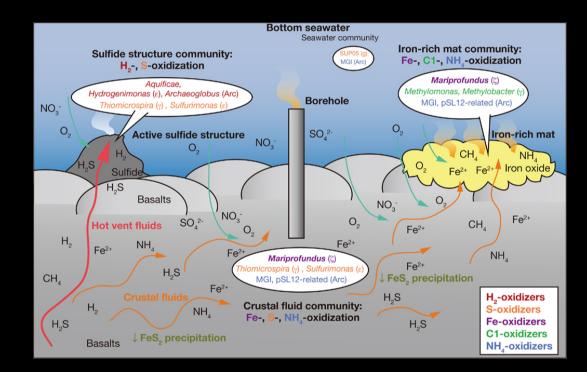
LIFE on Earth



FUNCTION	DESCRIPTION	
Uses as reactant	takes part in many metabolic reactions. •e.g. hydrolysis of sugar, raw material for photosynthesis.	
Uses as solvent	good solvent for inorganic and many small organic substances.	
Acts as medium for transportation	liquid nature, can flow from one area to others. •many chemicals can dissolve in it.	
Acts as medium for chemical reaction	many chemicals can dissolve in it. •not easily subjected to large temperature fluctuation, thus reactions can take place in a constant rate.	
Provides support	 provides turgidity to support herbaceous plants and small organisms provides buoyancy for aquatic organisms 	
Others	 decreases body temperature by evaporation of water from body surface e.g. sweat necessary for forming body secretion e.g. digestive juice medium for fertilization of eggs and sperms in mammals 	

The elements used by living organisms either in:

- structural macromolecules (proteins, lipids)
- energy transformation
- electron transfer chains
- energy sources, and as oxidants or reductants



Mineral Surface	Elemental composition	Properties	
Basalt minerals	Si, O, Fe	Major mineral surface on early Earth	
Apatite	Ca, PO ₄ ²⁻	Primary phosphate mineral	
Clays	Si, Al, O	Can organize organics into films and catalyze polymerization reactions	
Pyrite	FeS ₂	Source of reducing power	
Calcite	CaCO ₃	Chiral surfaces; concentrate organics such nucleotides from models	
Quartz	SiO ₂	Chiral surfaces	
Ultramafic minerals	Fe, Mg	Generate hydrogen and organic compounds from CO ₂	
Borate minerals	В	Catalyze the synthesis of ribose	
		(Modified from Deamer, 2007)	

Light source Photosynthesis, Radiolysis, generation of oxidants

Chemical source Redox process

Other gradients thermal, osmotic ...

The "Unity of Metabolism" predicts that organisms (even with different biochemistries than Earth organisms) on any active planet (water) will use the same chemical energy sources and electron acceptors and donors as Earth organisms

A variation of "follow the energy", Hoehler, Amend and Shock, (2007); Shock and Holland, (2007)

Why Europa stands out as a potential habits

Explain

- Aqueous reservoirs in the subsurface
- Bio-essential elements
- Available energy for life

- Icy shell

Distribution of water at depth ocean shallow chambers/subglacial lakes water-rock interactions

Reservoirs potentially connected with the surface Endogenic materials can provide clues about aqueous reservoirs

Energy/geological activity.

Interactions with the objects in the Jupiter system Hydrothermal systems and chemical disequilibria Maintain the liquid water and rock-water interaction

Building blocks and geochemical cycling

Why Europa is the best place to search for evaluating

Dark biosphere under the ice active today. Abiogenesis in hydrothermal systems

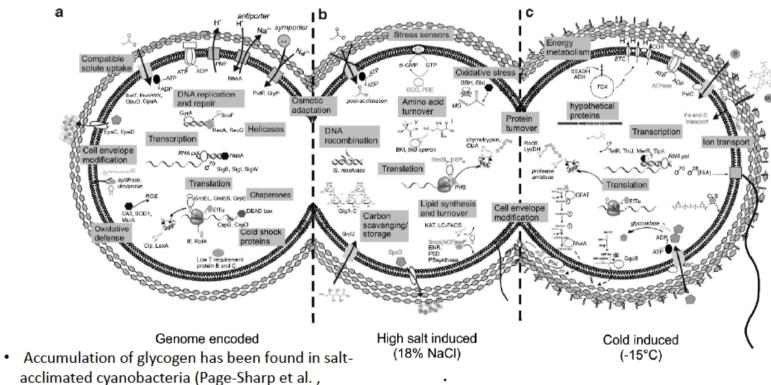
A second origin of life. Convergent evolution as a consequence of abiogenesis

Evidences of life. Searching strategy

THE POTENTIAL BIOSPHERE

• MICROBIAL ECOSYSTEMS: CHEMOTROPHIC

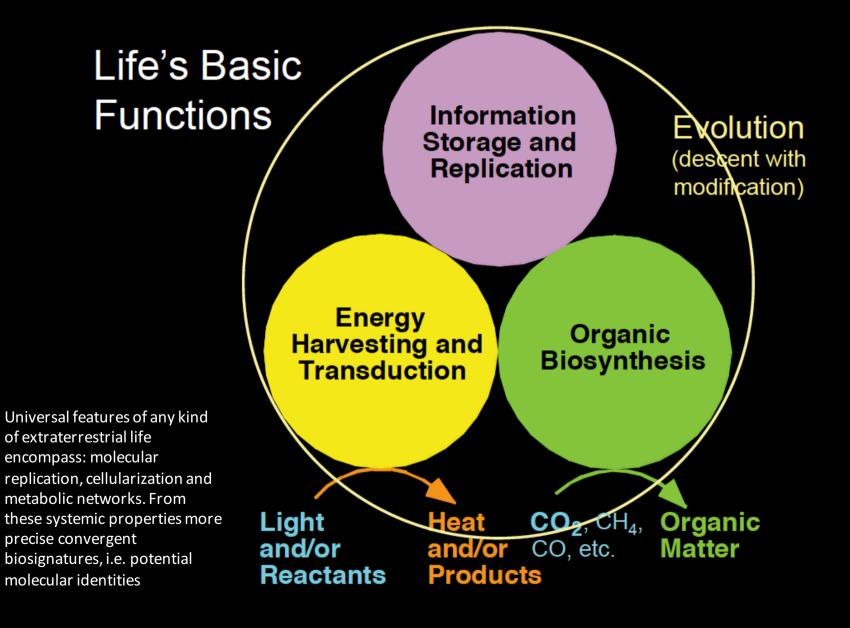
- Distribution controlled by hydrothermal activity, which provide primary nutrients (H2, CH4, ketones)
- Surface bounded, not free-living
- No carbonate mats as do chemotrophic colonies around terrestrial smokers because they need sulfate (oxigenated environment), and P above the lysocline



Metabolism	Reaction	∆G°′ (kJ per mole)*	Examples in vent environments		
Anaerobic					
Methanogenesis	$4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$ $CH_3CO_2^- + H_2O \rightarrow CH_4 + HCO_3^-$ $4HCOO^- + H^+ \rightarrow 3HCO_3^- + CH_4$	-131 -36 -106	Methanococcus spp. common in magma-hosted vents; Methanosarcinales at Lost City		
S° reduction	$S^{\circ} + H_2 \rightarrow H_2 S$	-45	Lithotrophic and heterotrophic; hyperthermophilic archaea		
Anaerobic CH ₄ oxidation	$CH_4 + SO_4^{\ 2^-} \mathop{\rightarrow} HS^- + HCO_3^{\ -} + H_2^{\ }O$	-21	Methanosarcina spp. and epsilonproteobacteria at mud volcanoes and methane seeps		
Sulfate reduction	SO_4^{2-} + H ⁺ + 4 H ₂ \rightarrow HS ⁻ + 4 H ₂ 0	-170	Deltaproteobacteria		
Fe reduction	$8 \text{ Fe}^{3+} + \text{CH}_3\text{CO}_2^- + 4 \text{ H}_2\text{O} \rightarrow 2 \text{ HCO}_3^- + 8 \text{ Fe}^{2+} + 9 \text{ H}^+$	Not calculated [‡]	Epsilonproteobacteria, thermophilic bacteria and hyperthermophilic Crenarchaeota		
Fermentation	$C_6H_{12}O_6 \rightarrow 2C_2H_6O + 2CO_2$	-300	Many genera of bacteria and archaea		
Aerobic					
Sulfide oxidation [§]	HS^- + 2 $O_2 \rightarrow SO_4^{2-}$ + H^+	-750	Many genera of bacteria; common vent animal symbionts		
CH_4 oxidation	$CH_4 + 2O_2 \rightarrow HCO_3^- + H^* + H_2O_3^-$	-750	Common in hydrothermal systems; vent animal symbionts		
$H_{_2}$ oxidation	$H_2 + 0.5 O_2 \rightarrow H_2O$	-230	Common in hydrothermal systems; vent animal symbionts		
Fe oxidation	Fe^{2*} + 0.5 O_2 + H [*] \rightarrow Fe^{3*} + 0.5 H_20	-65	Common in low-temperature vent fluids; rock-hosted microbial mats		
Mn oxidation	$\mathrm{Mn^{2+}+0.5~O_2+H_2O} \rightarrow \mathrm{MnO_2+2~H^{\circ}}$	-50	Common in low-temperature vent fluids; rock-hosted microbial mats; hydrothermal plumes		
Respiration	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$	-2,870	Many genera of bacteria		
*From REFS 73,103 and W.J. Brazelton (personal communication). *Some hyperthermophiles from the Archaea and Bacteria domains can couple the reduction of Fe with					

*From REFS 73,103 and WJ. Brazelton (personal communication). 'Some hyperthermophiles from the Archaea and Bacteria domains can couple the reduction of Fe with the oxidation of H₂ (REFS 104,105). 'Some epsilonproteobacteria from subsea-floor hydrothermal vents, including newly erupted vents, can oxidize H₂S to S° (REF. 106).

FROM FORMATION TO SEARCH FOR LIFE


Planococcus halocryophilus, a bacterial strain isolated form the Arctic permafrost, has an active metabolism at -15°C in a liquid brine

- acclimated cyanobacteria (Page-Sharp et al., 1998)
- Induction of different levels of osmolyte ٠ transporters

- · Cell envelope precursors, modifications and synthesis.
- Energy metabolism.

POTENTIAL BIOSPHERE

